题目内容
若f(
+x)+f(
-x)=2对任意的正实数x成立,则f(
)+f(
)+f(
)+…+f(
)=______.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2010 |
| 2 |
| 2010 |
| 3 |
| 2010 |
| 2009 |
| 2010 |
∵f(
+x)+f(
-x)=2对任意的正实数x成立
∴f(
+
)+f(
-
) =2,
f(
+
)+f(
-
) =2,
f(
+
)+f(
-
) =2
…
f(
)+f(
) =2
即f(
)+f(
) =2,
f(
)+f(
) =2,
f(
)+f(
) =2,
…
f(
)=1
∴f(
)+f(
)+f(
)++…+f(
)=2009
故答案为2009
| 1 |
| 2 |
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
| 1004 |
| 2010 |
| 1 |
| 2 |
| 1004 |
| 2010 |
f(
| 1 |
| 2 |
| 1003 |
| 2010 |
| 1 |
| 2 |
| 1003 |
| 2010 |
f(
| 1 |
| 2 |
| 1002 |
| 2010 |
| 1 |
| 2 |
| 1002 |
| 2010 |
…
f(
| 1 |
| 2 |
| 1 |
| 2 |
即f(
| 1 |
| 2010 |
| 2009 |
| 2010 |
f(
| 2 |
| 2010 |
| 2008 |
| 2010 |
f(
| 3 |
| 2010 |
| 2007 |
| 2010 |
…
f(
| 1005 |
| 2010 |
∴f(
| 1 |
| 2010 |
| 2 |
| 2010 |
| 3 |
| 2010 |
| 2009 |
| 2010 |
故答案为2009
练习册系列答案
相关题目