题目内容
已知数列{an}中,a1=
,点(n,2an+1-an)在直线上y=x上,其中n=1,2,3…
(1)令bn=an-1-an-3,求证数列{bn}是等比数列;
(2)求数列{an}的通项;
(3)设Sn,Tn分别为数列{an},{bn}的前n项和,是否存在实数λ,使得数列{
}为等差数列存在,试求出λ,不存在,则说明理由.
| 1 |
| 2 |
(1)令bn=an-1-an-3,求证数列{bn}是等比数列;
(2)求数列{an}的通项;
(3)设Sn,Tn分别为数列{an},{bn}的前n项和,是否存在实数λ,使得数列{
| Sn+λTn |
| n |
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(1)由已知得2an+1-an=n,从而a2=
,a2-a1-1=
-
-1=-
,进而
=
=
=
.由此能证明{bn}是以-
为首项,以
为公比的等比数列.
(2)由an+1-an-1=-
×
,利用累加法能求出an=
+n-2.
(3)由Sn=
+3[1-(
)n],Tn=
[(
)n-1],得
=
-
λ,
=
,
=
,再由数列{
}是等差数列,能求出λ=2.
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| bn+1 |
| bn |
| an+2-an+1-1 |
| an+1-an-1 |
| ||||
| an+1-an-1 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
(2)由an+1-an-1=-
| 3 |
| 2 |
| 1 |
| 2n |
| 3 |
| 2n |
(3)由Sn=
| n(n-3) |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| S1+λT1 |
| 1 |
| 1 |
| 2 |
| 3 |
| 4 |
| S2+λT2 |
| 2 |
| 10-9λ |
| 16 |
| S3+λT3 |
| 3 |
| 42-21λ |
| 48 |
| Sn+λTn |
| n |
解答:
(1)证明:∵数列{an}中,a1=
,点(n,2an+1-an)在直线上y=x上,其中n=1,2,3…
∴2an+1-an=n,
∴2a2-
=1,解得a2=
,a2-a1-1=
-
-1=-
,
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
=
=
=
=
.
bn=-
×(
)n-1=-
×
,
∴{bn}是以-
为首项,以
为公比的等比数列.
(2)解:∵an+1-an-1=-
×
,
∴a2-a1-1=-
×
,
a3-a2-1=-
×
,
∴an-an-1-1=-
×
,
将以上各式相加得:
∴an-a1-(n-1)=-
(
+
+…+
),
∴an=a1+n-1-
×
=
+(n-1)-
(1-
)=
+n-2.
∴an=
+n-2.
(3)解:存在λ=2,{
}为等差数列.
Sn=
+3[1-(
)n],Tn=
[(
)n-1]
∴
=
-
λ,
=
,
=
,
数列{
}是等差数列
∴2×
=
-
λ+
,∴λ=2
当λ=2时,
=
,数列数列{
}为等差数列.
| 1 |
| 2 |
∴2an+1-an=n,
∴2a2-
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
| bn+1 |
| bn |
| an+2-an+1-1 |
| an+1-an-1 |
| ||||
| an+1-an-1 |
=
| ||
| an+1-an-1 |
| 1 |
| 2 |
bn=-
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n |
∴{bn}是以-
| 3 |
| 4 |
| 1 |
| 2 |
(2)解:∵an+1-an-1=-
| 3 |
| 2 |
| 1 |
| 2n |
∴a2-a1-1=-
| 3 |
| 2 |
| 1 |
| 2 |
a3-a2-1=-
| 3 |
| 2 |
| 1 |
| 22 |
∴an-an-1-1=-
| 3 |
| 2 |
| 1 |
| 2n-1 |
将以上各式相加得:
∴an-a1-(n-1)=-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
∴an=a1+n-1-
| 3 |
| 2 |
| ||||
1-
|
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 3 |
| 2n |
∴an=
| 3 |
| 2n |
(3)解:存在λ=2,{
| Sn+λTn |
| n |
Sn=
| n(n-3) |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴
| S1+λT1 |
| 1 |
| 1 |
| 2 |
| 3 |
| 4 |
| S2+λT2 |
| 2 |
| 10-9λ |
| 16 |
| S3+λT3 |
| 3 |
| 42-21λ |
| 48 |
数列{
| Sn+λTn |
| n |
∴2×
| 10-9λ |
| 16 |
| 1 |
| 2 |
| 3 |
| 4 |
| 42-21λ |
| 48 |
当λ=2时,
| Sn+λTn |
| n |
| n-3 |
| 2 |
| Sn+λTn |
| n |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查数列为等差数列时满足条件的实数是否存在的判断与求法,解题时要认真审题,注意累加法、构造法的合理运用.
练习册系列答案
相关题目
集合A={x|0<x<2},B={x|x2-x>0},则A∩B=( )
| A、R | B、(-∞,0)∪(1,2) |
| C、∅ | D、(1,2) |
若|
|=|
|=|
|=1,且<
,
>=
,则(
+
-
)•(
+
+
)=( )
| a |
| b |
| c |
| a |
| b |
| π |
| 2 |
| a |
| b |
| 2 |
| c |
| a |
| b |
| 2 |
| c |
| A、0 | B、1 | C、2 | D、3 |
若实数a,b,c满足a2+b2+c2=1,则3ab-3bc+2c2的最大值为( )
| A、1 | B、2 | C、3 | D、4 |