题目内容
在数列{an}中,a1=2,an+1=| an | 3an+1 |
分析:根据题设条件,依次由n=1,2,3,分别求出a1,a2,a3,a4,仔细观察a1,a2,a3,a4,总结规律,猜想an.
解答:解:∵a1=2,an+1=
(n∈N*),
∴a1=2=
,
a2=
=
=
,
a3=
=
=
,
a4=
=
=
,
由此猜测an=
.
故答案为:an=
.
| an |
| 3an+1 |
∴a1=2=
| 2 |
| 6×1-5 |
a2=
| 2 |
| 3×2+1 |
| 2 |
| 7 |
| 2 |
| 6×2-5 |
a3=
| ||
|
| 2 |
| 13 |
| 2 |
| 6×3-5 |
a4=
| ||
|
| 2 |
| 19 |
| 2 |
| 6×4-5 |
由此猜测an=
| 2 |
| 6n-5 |
故答案为:an=
| 2 |
| 6n-5 |
点评:本题考查数列的性质和应用,解题时要注意总结规律,合理猜想.
练习册系列答案
相关题目