题目内容

9.已知函数y=x3+px2+qx,其图象与x轴切于非原点的一点,且该函数的极小值是-4,那么切点坐标为(-3,0).

分析 设切点(a,0)(a≠0),f(x)=x(x2+px+q).由题意得:方程x2+px+q=0有两个相等实根a,故可得f(x)=x(x-a)2=x3-2ax2+a2x,再利用y极小值=-4,可求a=-3,从而得到切点.

解答 解:设切点(a,0)(a≠0),
f(x)=x(x2+px+q),
由题意得:方程x2+px+q=0有两个相等实根a,
故可得f(x)=x(x-a)2=x3-2ax2+a2x
f′(x)=3x2-4ax+a2=(x-a)(3x-a),
令f′(x)=0,则x=a或$\frac{a}{3}$,
∵f(a)=0≠-4,
∴f($\frac{a}{3}$)=-4,
于是$\frac{a}{3}$($\frac{a}{3}$-a)2=-4,
∴a=-3,
即有切点为(-3,0),
故答案为:(-3,0).

点评 本题以函数为载体,考查函数的极值,考查导数的几何意义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网