题目内容

15.如图,在△ABC中,BC=3.AC=$\frac{3}{2}$$\sqrt{2}$,B=$\frac{π}{6}$,∠BAC$>\frac{π}{2}$,AE,AF是∠BAC的三等分角平分线,分别交BC于点E,F.
(1)求角C的大小;
(2)求线段EF的长.

分析 (1)设∠BAE=α,则∠C=150°-3α,利用正弦定理可得角C的大小;
(2)利用正弦定理可得BE,CF,即可求线段EF的长.

解答 解:(1)设∠BAE=α,则∠C=150°-3α,
∴由正弦定理可得$\frac{\frac{3}{2}\sqrt{2}}{\frac{1}{2}}$=$\frac{3}{sin3α}$=$\frac{AB}{sin(150°-3α)}$,
∴sin3α=$\frac{\sqrt{2}}{2}$,
∵∠BAC$>\frac{π}{2}$,
∴3α=135°,
∴C=150°-3α=15°;
(2)在△ABC中,$\frac{AB}{sin15°}$=$\frac{\frac{3}{2}\sqrt{2}}{\frac{1}{2}}$,∴AB=$\frac{3\sqrt{3}-3}{2}$,
△ABE中,$\frac{BE}{sin45°}$=$\frac{AB}{sin105°}$,∴BE=6-3$\sqrt{3}$.
△AFC中,$\frac{\frac{3}{2}\sqrt{2}}{sin120°}=\frac{CF}{sin45°}$,∴CF=$\sqrt{3}$,
∴EF=3-6+3$\sqrt{3}$-$\sqrt{3}$=2$\sqrt{3}$-3.

点评 本题考查正弦定理的运用,考查学生的计算能力,正确运用正弦定理是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网