题目内容
若函数f(x)=lg(x+2x-m)在区间[1,2]上有意义,则实数m的取值范围是( )
| A.(-∞,3) | B.(-∞,6) | C.[1,2] | D.(-∞,3] |
令对数的真数t=x+2x-m,则它的导数为t′=1+2xln2,再由x∈[1,2],可得t′>0,
故函数t═x+2x-m在区间[1,2]上为增函数,故函数f(x)=lg(x+2x-m)在区间[1,2]上是增函数.
再由函数f(x)=lg(x+2x-m)在区间[1,2]上有意义,可得当x=1时,t>0,即 1+2-m>0,解得m<3,
故选A.
故函数t═x+2x-m在区间[1,2]上为增函数,故函数f(x)=lg(x+2x-m)在区间[1,2]上是增函数.
再由函数f(x)=lg(x+2x-m)在区间[1,2]上有意义,可得当x=1时,t>0,即 1+2-m>0,解得m<3,
故选A.
练习册系列答案
相关题目