题目内容

已知两函数f(x)=Asin(ωx+φ)和g(x)=Acos(ωx+φ),其中A>0,ω>0,|φ|<
π2
,若函数f(x)的图象在y轴右侧的第一个最大值点和第一个最小值点分别为(π,2)和(4π,-2).
(1)求A,ω和φ的值;
(2)请在答卷给定的区域中用五点作图法填写列表并在坐标系中画出y=g(x)在长度为一个周期的闭区间上的函数图象.
分析:(1)依题意,可求得A,由T=6π可求ω,函数图象过(π,2)可求φ;
(2)依题意得g(x)=2cos(
1
3
x+
π
6
),列表,作图即可.
解答:(1)由题意知:A=2,…(1分)
∵T=6π,
ω
=6π得
ω=
1
3
,…(3分)
∴f(x)=2sin(
1
3
x+φ),
∵函数图象过(π,2),
∴sin(
π
3
+φ)=1,
∵-
π
6
<φ+
π
3
6

∴φ+
π
3
=
π
2
,得φ=
π
6
…(5分)
∴A=2,ω=
1
3
,φ=
π
6
ω=
1
3
,…(6分)
(2)依题意得g(x)=2cos(
1
3
x+
π
6
);
1
3
x+
π
6
0
π
2
π
2
x -
π
2
π
2
11π
2
g(x) 2 0 -2 0 2
作图如下:
                                    …(10分)…(14分)
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查五点法作函数y=Asin(ωx+φ)的图象,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网