题目内容
数列{an}满足:an=3an-1+3n-1(n∈N,n≥2),其中a4=365,
(1)求a1,a2,a3; (2)若{
}为等差数列,求常数λ的值;(3)求{an}的前n项和Sn.
(1)求a1,a2,a3; (2)若{
| an+λ |
| 3n |
(1)a1=5,a2=23,a3=95
(2)由{
}为等差数列可得:
-
为常数,
即
为常数,
所以2λ+1=0,
故λ=-
(3)由2)可得an=(n+
)3n+1
Sn′=
×3+
×32+…+ (n+
)3n
3Sn′=
×32+
×33+…(n-
)×3n+(n+
)×3n+1
∴-2Sn′=
+32+33+…+3n-(n+
)×3n+1
所以Sn=
(3n+1+1)
(2)由{
| an+λ |
| 3n |
| an+λ |
| 3n |
| an-1+λ |
| 3n-1 |
即
| 3n-(2λ+1) |
| 3n |
所以2λ+1=0,
故λ=-
| 1 |
| 2 |
(3)由2)可得an=(n+
| 1 |
| 2 |
Sn′=
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
3Sn′=
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴-2Sn′=
| 9 |
| 2 |
| 1 |
| 2 |
所以Sn=
| n |
| 2 |
练习册系列答案
相关题目