题目内容
定义:称
为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设dn=2n•an,试求数列{dn}的前n项和Tn.
| n |
| p1+p2+…+pn |
| 1 |
| 2n+1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设dn=2n•an,试求数列{dn}的前n项和Tn.
分析:(Ⅰ)直接利用给出的定义得到
=
,整理得到Sn=2n2+n.分n=1和n≥2求出数列{an}的通项,验证n=1时满足,所以数列{an}的通项公式可求;
(Ⅱ)把数列{an}的通项公式代入dn=2n•an,然后利用错位相减法求出数列{dn}的前n项和Tn.
| n |
| a1+a2+…+an |
| 1 |
| 2n+1 |
(Ⅱ)把数列{an}的通项公式代入dn=2n•an,然后利用错位相减法求出数列{dn}的前n项和Tn.
解答:解:(Ⅰ)由已知定义,得
=
,
∴a1+a2+…+an=n(2n+1)=Sn,即Sn=2n2+n.
当n=1时,a1=S1=3.
当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时也成立,∴an=4n-1;
(Ⅱ)由an=4n-1,所以dn=2n•an=(4n-1)•2n.
则数列{dn}的前n项和Tn=d1+d2+d3+…+dn.
即 Tn=3×2+7×22+11×23+…+(4n-1)×2n(1)
2Tn=3×22+7×23+11×24+…+(4n-1)×2n+1(2)
(1)-(2)得:-Tn=6+4×(22+23+…+2n)-(4n-1)•2n+1
=6+4×
-(4n-1)•2n+1=-10+(5-4n)•2n+1.
所以 Tn=(4n-5)•2n+1+10.
| n |
| a1+a2+…+an |
| 1 |
| 2n+1 |
∴a1+a2+…+an=n(2n+1)=Sn,即Sn=2n2+n.
当n=1时,a1=S1=3.
当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1.
当n=1时也成立,∴an=4n-1;
(Ⅱ)由an=4n-1,所以dn=2n•an=(4n-1)•2n.
则数列{dn}的前n项和Tn=d1+d2+d3+…+dn.
即 Tn=3×2+7×22+11×23+…+(4n-1)×2n(1)
2Tn=3×22+7×23+11×24+…+(4n-1)×2n+1(2)
(1)-(2)得:-Tn=6+4×(22+23+…+2n)-(4n-1)•2n+1
=6+4×
| 4(1-2n-1) |
| 1-2 |
所以 Tn=(4n-5)•2n+1+10.
点评:本题是新定义题,考查了由数列的前n项和求数列的通项公式,运用了分类讨论的数学思想方法,考查了利用错位相减法求数列的前n项和,考查了学生的计算能力,是中档题.
练习册系列答案
相关题目