题目内容
3.在等比数列{an}中,a5-a1=15,a4-a2=6,则a3=( )| A. | -4 | B. | 4 | C. | -4或4 | D. | -8或8 |
分析 先假设公比,根据条件,列出方程,求得等比数列的首项与公比,再利用等比数列的通项求a3的值.
解答 解:设等比数列的公比为q,则
∵a5-a1=15,a4-a2=6,
∴a1q4-a1=15,a1q3-a1q=6,
∴q2+1=$\frac{5}{2}$q
∴q=2或q=$\frac{1}{2}$,
∴a1=1或a1=-16
∴a3=±4
故选C.
点评 本题重点考查等比数列的通项,解题的关键是构建方程组,求出等比数列的首项与公比.
练习册系列答案
相关题目
11.在△ABC中,A=$\frac{π}{6}$,AB=2,AC=3,点M在BC上且满足$\overrightarrow{CM}$=2$\overrightarrow{MB}$,则$\overrightarrow{AM}$$•\overrightarrow{BC}$=( )
| A. | $\frac{1}{3}$+$\sqrt{3}$ | B. | $\frac{1}{3}$-$\sqrt{3}$ | C. | $\frac{11}{3}$+$\sqrt{3}$ | D. | $\frac{11}{3}$-$\sqrt{3}$ |
9.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍有少量的残留农药,食用时需要用清水清洗干净.如表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的统计表:
(1)令ω=x2,利用给出的参考数据求出y关于ω的回归方程$\widehat{y}$=$\widehat{b}$ω+$\widehat{a}$($\widehat{a}$,$\widehat{b}$精确到0.1).
参考数据:$\sum_{i=1}^{5}$ωi=55,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)(yi-$\overline{y}$)=-751,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)2=374.其中ωi=x${\;}_{i}^{2}$,$\overline{ω}$=$\frac{1}{5}$$\sum_{i=1}^{5}$ωi.
(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需要多少千克的清水洗1千克蔬菜?(精确到0.1,参考数据$\sqrt{5}$≈2.24).
(附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 58 | 54 | 39 | 29 | 10 |
参考数据:$\sum_{i=1}^{5}$ωi=55,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)(yi-$\overline{y}$)=-751,$\sum_{i=1}^{5}$(ωi-$\overline{ω}$)2=374.其中ωi=x${\;}_{i}^{2}$,$\overline{ω}$=$\frac{1}{5}$$\sum_{i=1}^{5}$ωi.
(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需要多少千克的清水洗1千克蔬菜?(精确到0.1,参考数据$\sqrt{5}$≈2.24).
(附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.