题目内容
设x∈(0,
],则函数(sin2x+
)(cos2x+
)的最小值是______.
| π |
| 2 |
| 1 |
| sin2x |
| 1 |
| cos2x |
令sinx=t∈(0,1](x∈(0,
])则函数(sin2x+
)(cos2x+
)=t+
,t∈(0,1]
∵t+
≥2,等号当且仅当t=
=1时成立,
∴(sin2x+
)(cos2x+
)的最小值是2
故应填 2
| π |
| 2 |
| 1 |
| sin2x |
| 1 |
| cos2x |
| 1 |
| t |
∵t+
| 1 |
| t |
| 1 |
| t |
∴(sin2x+
| 1 |
| sin2x |
| 1 |
| cos2x |
故应填 2
练习册系列答案
相关题目