ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©É趯ֱÏßl£ºy=kx+mÓëÍÖÔ²EÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¬ÇÒÓëÖ±Ïßx=4ÏཻÓÚµãQ£®ÊÔ̽¾¿£º¢ÙÒÔPQΪֱ¾¶µÄÔ²ÓëxÖáµÄλÖùØÏµ£¿
¢ÚÔÚ×ø±êÆ½ÃæÄÚÊÇ·ñ´æÔÚ¶¨µãM£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²ºã¹ýµãM£¿Èô´æÔÚ£¬Çó³öMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÀûÓÃÍÖÔ²µÄ¶¨Òå¡¢µÈ±ßÈý½ÇÐεÄÐÔÖʼ´¿ÉµÃ³ö£»
£¨2£©¢ÙÅжÏÔ²Ðĵ½xÖáµÄ¾àÀëÓë°ë¾¶µÄ´óС¹ØÏµ¼´¿ÉµÃ³ö£»
¢Ú¼ÙÉèÆ½ÃæÄÚ´æÔÚ¶¨µãMÂú×ãÌõ¼þ£¬ÔòÓɶԳÆÐÔÖªµãMÔÚxÖáÉÏ£¬ÔÙÀûÓÃÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇÊÇÖ±½Ç¼´¿ÉÇó³ö£®
£¨2£©¢ÙÅжÏÔ²Ðĵ½xÖáµÄ¾àÀëÓë°ë¾¶µÄ´óС¹ØÏµ¼´¿ÉµÃ³ö£»
¢Ú¼ÙÉèÆ½ÃæÄÚ´æÔÚ¶¨µãMÂú×ãÌõ¼þ£¬ÔòÓɶԳÆÐÔÖªµãMÔÚxÖáÉÏ£¬ÔÙÀûÓÃÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇÊÇÖ±½Ç¼´¿ÉÇó³ö£®
½â´ð£º½â£º£¨1£©¡ß¡÷ABF2µÄÖܳ¤Îª8£¬¡à4a=8£¬¡àa=2£®
ÓÖµ±¡÷AF1F2Ãæ»ý×î´óʱΪÕýÈý½ÇÐΣ¬¡àA£¨0£¬b£©£¬a=2c£¬¡àc=1£¬b2=3£¬
¡àÍÖÔ²EµÄ·½³ÌΪ
+
=1
£¨2£©¢ÙÓÉ
£¬µÃ·½³Ì£¨4k2+3£©x2+8kmx+4m2-12=0
ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇеÃm¡Ù0£¬¡÷=0£¬⇒4k2-m2+3=0£®
ÇóµÃP(-
£¬
)£¬Q£¨4£¬4k+m£©£¬PQÖе㵽xÖá¾àÀë d2=(2k+
+
)2(
|PQ|)2-d2=(
-1)2£¾0(4k2-m2+3=0⇒m¡Ù2k)£®
ËùÒÔÔ²ÓëxÖáÏཻ£®
¢Ú¼ÙÉèÆ½ÃæÄÚ´æÔÚ¶¨µãMÂú×ãÌõ¼þ£¬ÓɶԳÆÐÔÖªµãMÔÚxÖáÉÏ£¬ÉèµãM×ø±êΪM£¨x1£¬0£©£¬
=(-
-x1£¬
)£¬
=(4-x1£¬4k+m)£®
ÓÉ
•
=0£¬µÃ(4x1-4)
+x12-4x1+3=0£®
¡à4x1-4=
-4x1+3=0£¬¼´x1=1£®
ËùÒÔ¶¨µãΪM£¨1£¬0£©£®
ÓÖµ±¡÷AF1F2Ãæ»ý×î´óʱΪÕýÈý½ÇÐΣ¬¡àA£¨0£¬b£©£¬a=2c£¬¡àc=1£¬b2=3£¬
¡àÍÖÔ²EµÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©¢ÙÓÉ
|
ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇеÃm¡Ù0£¬¡÷=0£¬⇒4k2-m2+3=0£®
ÇóµÃP(-
| 4k |
| m |
| 3 |
| m |
| m |
| 2 |
| 3 |
| 2m |
| 1 |
| 2 |
| 2k |
| m |
ËùÒÔÔ²ÓëxÖáÏཻ£®
¢Ú¼ÙÉèÆ½ÃæÄÚ´æÔÚ¶¨µãMÂú×ãÌõ¼þ£¬ÓɶԳÆÐÔÖªµãMÔÚxÖáÉÏ£¬ÉèµãM×ø±êΪM£¨x1£¬0£©£¬
| MP |
| 4k |
| m |
| 3 |
| m |
| MQ |
ÓÉ
| MP |
| MQ |
| k |
| m |
¡à4x1-4=
| x | 2 1 |
ËùÒÔ¶¨µãΪM£¨1£¬0£©£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²µÄ¶¨Òå¡¢µÈ±ßÈý½ÇÐεÄÐÔÖÊ¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµµÄÅжϡ¢Ô²µÄ¶Ô³ÆÐÔ¡¢Ö±¾¶Ëù¶ÔµÄÔ²ÖܽÇÊÇÖ±½ÇÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿