题目内容
(2013•崇明县一模)数列{an}的通项公式是an=
,前n项和为Sn,则
Sn=
.
|
| lim |
| n→∞ |
| 8 |
| 9 |
| 8 |
| 9 |
分析:由{an}的通项公式是an=
,推导出Sn=
,由此能求出
Sn.
|
|
| lim |
| n→∞ |
解答:解:∵{an}的通项公式是an=
,前n项和为Sn,
∴当n>2时,Sn=
+
+
+
+…+
=
+
+
-
-
=
-
,
∴Sn=
,
∴
Sn=
-
=
.
故答案为:
.
|
∴当n>2时,Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 33 |
| 1 |
| 34 |
| 1 |
| 3n |
=
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
=
| 8 |
| 9 |
| 1 |
| 3n |
∴Sn=
|
∴
| lim |
| n→∞ |
| 8 |
| 9 |
| lim |
| n→∞ |
| 1 |
| 3n |
| 8 |
| 9 |
故答案为:
| 8 |
| 9 |
点评:本题考查数列的极限的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目