题目内容
设P是
的二面角
内一点,
垂足,
则AB的长为( )
| A. | B. | C. | D. |
C
解:设平面PAB与二面角的棱l交于点Q,
连接AQ、BQ可得直线l⊥平面PAQB,
所以∠AQB是二面角α-l-β的平面角,∠AQB=60°,
故△PAB中,∠APB=180°-60°=120°,PA=4,PB=2,
由余弦定理得:AB2=PA2+PB2-2PA•PBcos120°,=42+22-2×4×2×(-1
2 ) =28,
所以AB=
,故选C.
连接AQ、BQ可得直线l⊥平面PAQB,
所以∠AQB是二面角α-l-β的平面角,∠AQB=60°,
故△PAB中,∠APB=180°-60°=120°,PA=4,PB=2,
由余弦定理得:AB2=PA2+PB2-2PA•PBcos120°,=42+22-2×4×2×(-1
所以AB=
练习册系列答案
相关题目