题目内容

定义在(0,+∞)上的函数f(x)满足:对任意的x,y∈(0,+∞),都有f(xy)=f(x)+f(y)-1,且当0<x<1时,都有f(x)>1成立.
(1)判断并证明f(x)在定义域(0,+∞)上的单调性;
(2)若f(9)=7,解不等式:f(x2+2x)>4
(1)函数f(x)在定义域(0,+∞)上是一个减函数.证明如下:
     设0<x1<x2,则 0<
x1
x2
<1,于是有:f(
x1
x2
)
>1
      f(x1)=f(x2
x1
x2
)
=f(x2)+f(
x1
x2
)
-1>f(x2)+1-1=f(x2
      即:f(x1)>f(x2).
      由函数的单调性定义可知:函数f(x)在定义域(0,+∞)上是一个减函数.
(2)由已知,f(3×3)=f(3)+f(3)-1=7,即得:f(3)=4,因此有
     f(x2+2x)>4=f(3),又有(1)的结论以及函数f(x)的定义域为(0,+∞),得不等式组:
    
x2+2x>0
3>0
x2+2x <3
,解得:-3<x<-2或0<x<1
所以:(1)数f(x)在定义域(0,+∞)上是一个减函数
          (2)不等式f(x2+2x)>4的解集为:{x|-3<x<-2或0<x<1}
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网