题目内容
设函数f(x)=
+lnx在[1,+∞)上为增函数.
(1)求正实数a的取值范围;
(2)若a=1,求证:
+
+
+…+
<lnn<n+
+
+
+…+
(n∈N*且n≥2).
| 1-x |
| ax |
(1)求正实数a的取值范围;
(2)若a=1,求证:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
(1)由已知:f'(x)=
(a>0).
依题意得:
≥0对x∈[1,+∞)恒成立.
∴ax-1≥0对x∈[1,+∞)恒成立,∴a-1≥0,即:a≥1.
故正实数a的取值范围为[1,+∞).
(2)∵a=1,∴由(1)知:f(x)=
+lnx在[1,+∞)上为增函数,
∴n≥2时:f(
)=
+ln
=ln
-
>f(1)=0,
即:
<ln
…. (9分)
∴
+
+
+…+
<ln
+ln
+…+ln
=1nn.
设g(x)=lnx-x,x∈[1,+∞),则g′(x)=
-1≤0对x∈[1,+∞)恒成立,
∴g′(x)在[1+∞)为减函数.
∴n≥2时:g(
)=ln
-
<g(1)=-1<0,
即:ln
<
=1+
(n≥2).
∴lnn=ln
+ln
+ln
+…+ln
<(1+
)+(1+
)+…+(1+
)=n+
+
+…+
,
综上所证:
+
+…+
<lnn<n+
+
+…+
(n∈N*且≥2)成立.
| ax-1 |
| ax2 |
依题意得:
| ax-1 |
| ax2 |
∴ax-1≥0对x∈[1,+∞)恒成立,∴a-1≥0,即:a≥1.
故正实数a的取值范围为[1,+∞).
(2)∵a=1,∴由(1)知:f(x)=
| 1-x |
| x |
∴n≥2时:f(
| n |
| n-1 |
1-
| ||
|
| n |
| n-1 |
| n |
| n-1 |
| 1 |
| n |
即:
| 1 |
| n |
| n |
| n-1 |
∴
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
设g(x)=lnx-x,x∈[1,+∞),则g′(x)=
| 1 |
| x |
∴g′(x)在[1+∞)为减函数.
∴n≥2时:g(
| n |
| n-1 |
| n |
| n-1 |
| n |
| n-1 |
即:ln
| n |
| n-1 |
| n |
| n-1 |
| 1 |
| n-1 |
∴lnn=ln
| 2 |
| 1 |
| 3 |
| 2 |
| 4 |
| 3 |
| n |
| n-1 |
| 1 |
| n-1 |
| 1 |
| n-2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
综上所证:
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
练习册系列答案
相关题目