题目内容
如图是一个输出一列数的算法流程图,则这列数的第三项是 .
若复数的实部是,则实数( )
A.2 B. C. D.
如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长是( )
A. B. C.6 D.
如图,某城市小区有一个矩形休闲广场,米,广场的一角是半径为米的扇形绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅(宽度不计),点在线段上,并且与曲线相切;另一排为单人弧形椅沿曲线(宽度不计)摆放.已知双人靠背直排椅的造价每米为元,单人弧形椅的造价每米为元,记锐角,总造价为元.
(1)试将表示为的函数,并写出的取值范围;
(2)如何选取点的位置,能使总造价最小.
已知函数若关于的方程有两个不同的实数根,则实数的取值范围是 .
设集合,,则 .
如图,四棱锥,底面为直角梯形,,底面,
为的中点,为棱的中点.
(Ⅰ)证明:平面;
(Ⅱ)已知,求点到平面的距离.
已知全集,集合,集合,则
A. B. C. D.
函数在(-1,+∞)上单调递增,则的取值范围是
A. B.
C. D.