ÌâÄ¿ÄÚÈÝ
17£®£¨1£©Çóy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£»
£¨2£©Çó¸ÃÌúƤÈÝÆ÷Ìå»ýVµÄ×î´óÖµ£®
·ÖÎö £¨1£©¸ù¾ÝÒ»Õų¤Îª108cm£¬¿íΪacmµÄ³¤·½ÐÎÌúƤABCD£¬¿ÉµÃx2+4xy=108a£¬½ø¶ø¿ÉÈ·¶¨xÓëyµÄ¹ØÏµÊ½£»
£¨2£©ÌúƤºÐÌå»ýV£¨x£©=x2y£¬Ç󵼺¯Êý£¬ÌÖÂÛaµÄ·¶Î§£¬Åжϵ¥µ÷ÐÔ£¬È·¶¨º¯ÊýµÄ×îÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃx2+4xy=108a£¬
¼´y=$\frac{108a-{x}^{2}}{4x}$£¬0£¼x¡Üa£®
£¨2£©ÌúƤºÐÌå»ýV£¨x£©=x2y=x2•$\frac{108a-{x}^{2}}{4x}$=$\frac{1}{4}$£¨-x3+108ax£©£¬0£¼x¡Üa£®
V¡ä£¨x£©=$\frac{1}{4}$£¨-3x2+108a£©£¬
ÁîV¡ä£¨x£©=0£¬µÃx=6$\sqrt{a}$£¬
µ±0£¼a¡Ü36£¬¼´6$\sqrt{a}$¡Ýaʱ£¬ÔÚ£¨0£¬a£©ÉÏV¡ä£¨x£©£¾0£¬V£¨x£©µÝÔö£¬
¿ÉµÃV£¨x£©max=V£¨a£©=$\frac{1}{4}$a2£¨108-a£©£»
µ±36£¼a£¼108£¬¼´6$\sqrt{a}$£¼aʱ£¬ÔÚ£¨0£¬6$\sqrt{a}$£©ÉÏV¡ä£¨x£©£¾0£¬V£¨x£©µÝÔö£¬
ÔÚ£¨6$\sqrt{a}$£¬a£©ÉÏV¡ä£¨x£©£¼0£¬V£¨x£©µÝ¼õ£®
¿ÉµÃV£¨x£©max=V£¨6$\sqrt{a}$£©=108a$\sqrt{a}$£®
×ÛÉϿɵÃ$\left\{\begin{array}{l}{\frac{1}{4}{a}^{2}£¨108-a£©£¬0£¼a¡Ü36}\\{108a\sqrt{a}£¬36£¼a£¼108}\end{array}\right.$£®
µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵Ĺ¹½¨£¬¿¼²éµ¼Êý֪ʶµÄÔËÓãºÇó×îÖµ£¬¿¼²é·ÖÀàÌÖÂÛ˼Ïë·½·¨£¬ÊôÓÚÖеµÌ⣮
| A£® | -$\frac{1}{2}$ | B£® | $\frac{2}{3}$ | C£® | 2 | D£® | 3 |
| A£® | 511 | B£® | 512 | C£® | 1023 | D£® | 1024 |