题目内容
17.计算${({-\frac{2}{5}})^0}-\root{3}{0.064}+lg2-lg\frac{1}{5}$的结果是1.6.分析 根据指数幂和对数的运算性质化简计算即可.
解答 解:${({-\frac{2}{5}})^0}-\root{3}{0.064}+lg2-lg\frac{1}{5}$=1-0.4+lg2+lg5=0.6+1=1.6,
故答案为:1.6.
点评 本题考查了指数幂和对数的运算性质,属于基础题.
练习册系列答案
相关题目
12.电流I随时间t变化的函数关系式为I=5sin(100πt+$\frac{π}{3}$),t∈[0,+∞),则初相为( )
| A. | 5 | B. | $\frac{1}{50}$ | C. | $\frac{π}{3}$ | D. | 100πt+$\frac{π}{3}$ |
13.将函数y=sin(x-$\frac{π}{6}$)的图象上所有点的横坐标缩短到原来的 $\frac{1}{2}$倍(纵坐标不变),再将所得函数的图象向左平移$\frac{π}{6}$个单位,最后所得到的图象对应的解析式是( )
| A. | y=sin$\frac{1}{2}$x | B. | y=sin($\frac{1}{2}$x-$\frac{π}{6}$) | C. | y=sin2x | D. | y=sin(2x+$\frac{π}{6}$) |
2.命题p:关于x的不等式(x-2)$\sqrt{{x}^{2}-3x+2}$≥0的解集为{x|x≥2},命题q:若函数y=kx2-kx-1的值恒小于0,则-4<k≤0,那么不正确的是( )
| A. | “非p”为假命题 | B. | “非q”为假命题 | C. | “p或q”为真命题 | D. | “p且q”为假命题 |
7.A={x|x>0},B={x|x2-1<0},A∩B=( )
| A. | {x|-1<x<1} | B. | {x|x>1} | C. | {x|x>0} | D. | {x|0<x<1} |