题目内容
椭圆的两个焦点和短轴两个顶点是一个含60°角的菱形的四个顶点,则椭圆的离心率为( )
分析:由题意有可得tan30°=
=
,或tan30°=
=
,
当
=
时,由e=
=
=
,求出e的值,
当
=
时,由e=
=
,求得e的值.
| ||
| 3 |
| b |
| c |
| ||
| 3 |
| c |
| b |
当
| ||
| 3 |
| b |
| c |
| c |
| a |
| ||
| a |
| ||||
| a |
当
| ||
| 3 |
| c |
| b |
| c |
| a |
| ||
| 3 |
| ||
| a |
解答:解:由于椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,
则tan30°=
=
,或tan30°=
=
,
当
=
时,由e=
=
=
,
∴e2=3(1-e2),解得e=
.
当
=
时,由e=
=
,
∴e2=
(1-e2),解得e=
.
综上,e=
,或e=
.
故选:A.
则tan30°=
| ||
| 3 |
| b |
| c |
| ||
| 3 |
| c |
| b |
当
| ||
| 3 |
| b |
| c |
| c |
| a |
| ||
| a |
| ||||
| a |
∴e2=3(1-e2),解得e=
| ||
| 2 |
当
| ||
| 3 |
| c |
| b |
| c |
| a |
| ||
| 3 |
| ||
| a |
∴e2=
| 1 |
| 3 |
| 1 |
| 2 |
综上,e=
| 1 |
| 2 |
| ||
| 2 |
故选:A.
点评:本题考查椭圆的标准方程,以及简单性质的应用,根据题意得到
=
,或
=
,是解题的关键.
| ||
| 3 |
| b |
| c |
| ||
| 3 |
| c |
| b |
练习册系列答案
相关题目