题目内容

11.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}•\overrightarrow{AC}$=$\overrightarrow{BA}•\overrightarrow{BC}$,sinA=$\frac{\sqrt{5}}{3}$.
(Ⅰ)求sinC的值;
(II)设D为AC的中点,若△ABC的面积为8$\sqrt{5}$,求BD的长.

分析 (1)利用向量的数量积和正玄定理得出sinB•cosA=sinA•cosB,根据三角公式得出A=B,根据诱导公式求解即可.
(2)利用面积公式,以及余弦定理求解即可.

解答 解:在△ABC中,∵$\overrightarrow{AB}•\overrightarrow{AC}$=$\overrightarrow{BA}•\overrightarrow{BC}$,
∴c•b•cosA=c•a•cosB,
即b•cosA=a•cosB,
sinB•cosA=sinA•cosB,
sin(A-B)=0,
∴A=B,
∵sinA=$\frac{\sqrt{5}}{3}$.
∴sinC=sin(π-2A)=sin(2A)=2sinAcosA=2×$\frac{\sqrt{5}}{3}$×$\frac{2}{3}$=$\frac{4\sqrt{5}}{9}$.
(2)设AC=BC=m,
∵△ABC的面积为8$\sqrt{5}$,
∴$\frac{1}{2}×{m}^{2}$×$\frac{4\sqrt{5}}{9}$=$8\sqrt{5}$,
m=3$\sqrt{2}$,cosC=$\frac{1}{9}$,
根据余弦定理得出:
BD2=m2$+\frac{{m}^{2}}{4}$$-2×m×\frac{m}{2}$×$\frac{1}{9}$=$\frac{41}{36}$m2=$\frac{1}{2}$$\sqrt{\frac{41}{2}}$
BD=$\frac{\sqrt{82}}{2}$.

点评 本题考查了向量数量积以及正弦定理和余弦定理的运用,在判断三角形形状时,要注意对角的范围进行分析,即求角的大小需要两个条件:该角的一个三角函数值和该角的范围,缺一不可,正、余弦定理是解三解形必用的数学工具

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网