题目内容
(2012•江门一模)已知函数f(x)=(1+cos2x)sin2x,x∈R.若f(α)=
,则f(α+
)=
或0
或0.
| 1 |
| 4 |
| π |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
分析:先化简f(x),由f(α)=
,求得α,代入解析式可求f(α+
)的值,注意讨论.
| 1 |
| 4 |
| π |
| 8 |
解答:解:f(x)=(1+cos2x)sin2x=(1+cos2x)•
=
=
-
cos4x,
因为f(α)=
,即
-
cos4α=
,解得α=
+
,k∈Z,
所以f(α+
)=
-
cos4(α+
)=
-
cos4(
+
)=
-
cos(kπ+π),
当k为偶数时,f(α+
)=
,当k为奇数时,f(α+
)=0,
所以f(α+
)=
或0,
故答案为:
或0.
| 1-cos2x |
| 2 |
| 1-cos22x |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
因为f(α)=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| kπ |
| 4 |
| π |
| 8 |
所以f(α+
| π |
| 8 |
| 1 |
| 4 |
| 1 |
| 4 |
| π |
| 8 |
| 1 |
| 4 |
| 1 |
| 4 |
| kπ |
| 4 |
| π |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
当k为偶数时,f(α+
| π |
| 8 |
| 1 |
| 2 |
| π |
| 8 |
所以f(α+
| π |
| 8 |
| 1 |
| 2 |
故答案为:
| 1 |
| 2 |
点评:本题考查二倍角的正弦、余弦公式,考查简单的三角方程,考查学生的运算能力.
练习册系列答案
相关题目