题目内容
(2007•奉贤区一模)若函数f(x)=3sinx+4cosx,则函数f(x)的最小正周期是
2π
2π
.分析:利用辅助角公式化简函数y=3sinx+4cosx为:y=5sin(x+φ),然后利用周期公式求出周期即可.
解答:解:函数y=3sinx+4cosx
=5sin(x+φ),其中tanφ=
,
所以 T=
=2π.
故答案为:2π.
=5sin(x+φ),其中tanφ=
| 4 |
| 3 |
所以 T=
| 2π |
| 1 |
故答案为:2π.
点评:本题是基础题,考查三角函数的辅助角化简三角函数为一个角的一个三角函数的形式,是求解三角函数的周期、最值、单调区间、对称轴等等的基本方法,注意学习应用.
练习册系列答案
相关题目