题目内容
对一切实数,所有的二次函数的值均为非负实数,则的最大值是____________.
如图,正方体中,是线段上一点.
(1)证明:平面;
(2)若二面角的余弦值为,判断点在线段上位置,并说明理由.
在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EF//AB,,AD=2,AB= AF=2EF=l,点P在棱DF上.
(1)若P为DF的中点,求证:BF//平面ACP
(2)若二面角D-AP-C的余弦值为,求PF的长度.
如图所示,在直三棱柱ABC-A1B1C1中, BC=AC ,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1,②A1B⊥NB1 ,③平面AMC1⊥平面CBA1 ,其中正确结论的个数为 ( )
A.0 B.1 C.2 D.3
为定义域R,图象关于原点对称,当时, (为常数),则
时,解析式为( )
A、
B、
C、
D、
甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率
若点A的坐标为(3,2),F是抛物线y2=2x的焦点,点M在抛物线上移动时,使|MF|+|MA|取得最小值的M点的坐标为( )
A.(0,0) B. C. D.(2,2)
若直线与圆的两个交点关于直线对称,则的值分别为( )
A.,
B.,
C.,
D.,
若存在正数使成立,则的取值范围是( )
A. B. C. D.