题目内容

设数列{an}的各项都是正数,且对任意nN*都有a13+a23+a33+…+an3=Sn2,记Sn为数列{an}的前n项和.

(1)求证: an2=2Sn-an;

(2)求数列{an}的通项公式;

(3)若bn=3n+(-1)n-1λ·(λ为非零常数,nN*),问是否存在整数λ,使得对任意nN*,都有bn+1bn?

(1)证明:在已知式中,

n=1时,a13=a12,∵a1>0,∴a1=1.                                                                         ?

n≥2时,a13+a23+…+an-13+an3=Sn2.                                                                  ①?

a13+a23+…+an-13=Sn-12.                                                                                      ②?

由①-②,得an3=an(2Sn-1+an).                                                                              ?

an>0,∴an2=2Sn-1+an,即an2=2Sn-an.?

a1=1适合上式,an2=2Sn-an(nN*).                                                                             ?

(2)解:由(1)知,an2=2Sn-an(nN*),                                                                           ③?

n≥2时,an-12=2Sn-1-an-1.                                                                                  ④?

当③-④,得?

an2-an-12=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1.                                                         ?

an+an-1>0,∴an-an-1=1.?

数列{an}是等差数列,首项为1,公差为1,可得an=n.                                           ?

(3)解:∵an=n,∴bn=3n+(-1)n-1λ·2=3n+(-1)n-1λ·2n.                                               ?

bn+1-bn=3n+1+(-1)nλ·2 n+1-[3n+(-1)n-1λ·2n]=2·3n-3λ(-1)n-1·2n>0.?

∴(-1)n-1·λ<()n-1.                                                                                            ⑤

n=2k-1,k=1,2,3,…时,⑤式即为λ<()2k-2.                                                        ?

依题意,⑥式对k=1,2,3,…都成立,?

n=2k,k=1,2,3,…时,⑤式即为λ>-()2k-1,                                                       ⑦?

依题意,⑦式对k=1,2,3,…都成立,∴λ>-.                                                    ?

∴-λ<1.又λ≠0,?

∴存在整数λ=-1,使得对任意nN*,都有bn+1bn.      


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网