题目内容
设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
x2+
x+
的图象上,数列{bn}的通项公式为bn=
+
,其前n项和为Tn.
(1)求an;
(2)求证:Tn-2n<2.
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| an+1 |
| an |
| an |
| an+1 |
(1)求an;
(2)求证:Tn-2n<2.
分析:(1)由Sn=
an2+
an+
,知Sn-Sn-1=an=
(an2-an-12)+
(an-an-1),整理,得(an-an-1)(an-an-1-4)=0,由an>0,能求出an.
(2)由bn=
+
=
+
=2+2(
-
),由此能够证明Tn-2n<2.
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2 |
(2)由bn=
| an+1 |
| an |
| an |
| an+1 |
| 4n+2 |
| 4n-2 |
| 4n-2 |
| 4n+2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(1)Sn=
an2+
an+
,
n≥2,Sn-1=
an-12+
an-1+
,
Sn-Sn-1=an=
(an2-an-12)+
(an-an-1),
整理,得(an-an-1)(an-an-1-4)=0,
∵an>0,
∴an-an-1=4,
由a1=
a12+
a1+
,解得a1=2,
∴数列{an}是以2为首项,4为公差的等差数列,
∴an=2+4(n-1)=4n-2.
(2)bn=
+
=
+
=2+2(
-
)…(12分)
∴Tn-2n=2(1-
+
-
+…+
-
)=2(1-
)<2.…(16分)
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
n≥2,Sn-1=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
Sn-Sn-1=an=
| 1 |
| 8 |
| 1 |
| 2 |
整理,得(an-an-1)(an-an-1-4)=0,
∵an>0,
∴an-an-1=4,
由a1=
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{an}是以2为首项,4为公差的等差数列,
∴an=2+4(n-1)=4n-2.
(2)bn=
| an+1 |
| an |
| an |
| an+1 |
| 4n+2 |
| 4n-2 |
| 4n-2 |
| 4n+2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn-2n=2(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
点评:本题考查数列的通项公式的求法,考查不等式的证明.考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目