题目内容
在数列{an}中,an≠0,a1=
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
(n∈N*).
(1)求数列{bn}的通项公式;(2)求数列{
}的前n项和Tn.
| 1 |
| 3 |
| 1 |
| an |
(1)求数列{bn}的通项公式;(2)求数列{
| an |
| n |
分析:(1)当n=1时,先求出b1=3,当n≥2时,求得b n+1与bn的关系即可知道bn为等差数列,然后便可求出数列{bn}的通项公式;
(2)根据(1)中求得的bn的通项公式先求出数列{
}的表达式,然后利用裂项求和法求出Tn的表达式,
(2)根据(1)中求得的bn的通项公式先求出数列{
| an |
| n |
解答:解:(1)当n=1时,b1=
=3,
当n≥2时,bn-bn-1=
-
=
=1,
∴数列{bn}是首项为3,公差为1的等差数列,
∴数列{bn}的通项公式为bn=n+2.
(2)∵
=
=
=
(
-
),
∴Tn=
+
+
+…+
+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
[
-(
+
)]
=
[
-
]
| 1 |
| a1 |
当n≥2时,bn-bn-1=
| 1 |
| an |
| 1 |
| an-1 |
| an-1-an |
| an•an-1 |
∴数列{bn}是首项为3,公差为1的等差数列,
∴数列{bn}的通项公式为bn=n+2.
(2)∵
| an |
| n |
| 1 |
| nbn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| a1 |
| 1 |
| a2 |
| 2 |
| a3 |
| 3 |
| an-1 |
| n-1 |
| an |
| n |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
点评:本题主要考查了数列的递推公式以及等差数列与不等式的结合,以及利用裂项求和法求数列的和,属于中档题.
练习册系列答案
相关题目