题目内容
数{an}满足a1=| 1 |
| 2 |
| 1 |
| n2-1 |
分析:根据题干条件an=an-1+
可知an-an-1=
=
=
(
-
),即可求出数列an的通项公式.
| 1 |
| n2-1 |
| 1 |
| n2-1 |
| 1 |
| (n+1)(n-1) |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
解答:解:∵an=an-1+
,
∴an-an-1=
=
=
(
-
),
∴an-a1=
(1-
+
-
+…+
-
+
-
)=
(1+
-
-
),
∴an=
-
,
故答案为an=
-
.
| 1 |
| n2-1 |
∴an-an-1=
| 1 |
| n2-1 |
| 1 |
| (n+1)(n-1) |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴an-a1=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-2 |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴an=
| 5 |
| 4 |
| 2n+1 |
| 2n(n+1) |
故答案为an=
| 5 |
| 4 |
| 2n+1 |
| 2n(n+1) |
点评:本题主要考查数列递推式的知识点,解答本题的关键是利用列项相消进行求和,此题比较简单.
练习册系列答案
相关题目
若等比数{an}满足a1=8,a2a3=-8,则a4等于( )
| A、-2 | B、1 | C、-1 | D、2 |