题目内容
在数列{an}中,an=
+
+…+
,又bn=
,
(1)求数列{an}和{bn}的通项an、bn
(2)求数列{bn}的前n项的和Sn.
| 1 |
| n+1 |
| 2 |
| n+1 |
| n |
| n+1 |
| 2 |
| an•an+1 |
(1)求数列{an}和{bn}的通项an、bn
(2)求数列{bn}的前n项的和Sn.
分析:(1)数列{an}中,an=
+
+…+
,根据等差数列前n项和公式化简出an代入求出bn;
(2)求数列{bn}的前n项的和Sn,利用裂项法进行化简,从而进行求解;
| 1 |
| n+1 |
| 2 |
| n+1 |
| n |
| n+1 |
(2)求数列{bn}的前n项的和Sn,利用裂项法进行化简,从而进行求解;
解答:解:(1)数列{an}中,an=
+
+…+
=
=
=
,
bn=
=
=
,
(2)数列{bn}的前n项的和Sn,
∵bn=
=8(
-
),
∴Sn=8(1-
+
-
+…+
-
)=8(1-
)=
;
| 1 |
| n+1 |
| 2 |
| n+1 |
| n |
| n+1 |
| 1+2+3+…+n |
| n+1 |
| ||
| n+1 |
| n |
| 2 |
bn=
| 2 |
| an•an+1 |
| 2 | ||||
|
| 8 |
| n(n+1) |
(2)数列{bn}的前n项的和Sn,
∵bn=
| 8 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=8(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 8n |
| n+1 |
点评:此题主要考查数列的求和的问题,以及等差数列的前n项和的公式,此题是一道基础题;
练习册系列答案
相关题目