题目内容
19.某同学用五点法画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| Asin(ωx+φ) | 0 | 5 | -5 | 0 |
分析 由表中数据列关于ω、φ的二元一次方程组,求得A、ω、φ的值,得到函数解析式,进一步完成数据补充.
解答 (本小题满分10分)
解:根据表中已知数据,解得A=5,ω=2,φ=-$\frac{π}{6}$,
数据补全如下表:
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | $\frac{13π}{12}$ |
| Asin(ωx+φ) | 0 | 5 | 0 | -5 | 0 |
点评 本题考查了由y=Asin(ωx+φ)的部分图象求解函数解析式,考查了y=Asin(ωx+φ)的性质,是中档题.
练习册系列答案
相关题目
14.已知具有线性相关的两个变量x,y之间的一组数据如表:
且回归方程是$\widehat{y}$=0.95x+2.6,则t=( )
| x | 0 | 1 | 2 | 3 | 4 |
| y | 2.2 | 4.3 | 4.5 | 4.8 | t |
| A. | 6.7 | B. | 6.6 | C. | 6.5 | D. | 6.4 |
4.下列函数是偶函数且值域为[0,+∞)的是( )
①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|
①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|
| A. | ①② | B. | ②③ | C. | ①④ | D. | ③④ |
11.已知U=R,A={x|x2+px+12=0},B={x|x2-5x+q=0},若(∁UA)∩B={2},(∁UB)∩A={4},则A∪B=( )
| A. | {2,3,4} | B. | {2.3} | C. | {2,4} | D. | {3,4} |
9.已知命题p:π是有理数,命题q:x2-3x+2<0的解集是(1,2).给出下列结论:
(1)命题p∧q是真命题
(2)命题p∧(¬q)是假命题
(3)命题(¬p)∨q是真命题
(4)命题(¬p)∨(¬q)是假命题
其中正确的是( )
(1)命题p∧q是真命题
(2)命题p∧(¬q)是假命题
(3)命题(¬p)∨q是真命题
(4)命题(¬p)∨(¬q)是假命题
其中正确的是( )
| A. | (1)(3) | B. | (2)(4) | C. | (2)(3) | D. | (1)(4) |