搜索
题目内容
(Ⅰ)已知双曲线C与双曲线
有相同的渐近线,且一条准线为
,求双曲线C的方程;
(Ⅱ)已知圆截
轴所得弦长为6,圆心在直线
上,并与
轴相切,求该圆的方程.
试题答案
相关练习册答案
(Ⅰ)
;(Ⅱ)
或
.
试题分析:(Ⅰ)由题设双曲线C的方程为
,则
,
∴ 双曲线C的方程为
;
(Ⅱ)由题设圆的方程为
,则
,
∴ 圆的方程为
或
.
点评:已知渐近线方程为
,则可设渐近线方程为
;与双曲线
共渐近线的双曲线方程可设为:
。
练习册系列答案
1加1阅读好卷系列答案
专项复习训练系列答案
初中语文教与学阅读系列答案
阅读快车系列答案
完形填空与阅读理解周秘计划系列答案
英语阅读理解150篇系列答案
奔腾英语系列答案
标准阅读系列答案
53English系列答案
考纲强化阅读系列答案
相关题目
已知圆锥曲线
的离心率e为方程
的两根,则满足条件的圆锥曲线的条数为 ( )
A.1
B.2
C.3
D.4
(12分)过椭圆
的一个焦点的直线交椭圆于
、
两点,求
面积的最大值.(
为坐标原点)
已知椭圆
,若其长轴在
轴上.焦距为
,则
等于___________。
在直角坐标系中,曲线
的参数方程为
,以
轴的正半轴为极轴建立极坐标系,曲线
在极坐标系中的方程为
.若曲线
与
有两个不同的交点,则实数
的取值范围是
.
(12分)如图,已知椭圆
(a>b>0)的离心率
,过点
和
的直线与原点的距离为
.
(1)求椭圆的方程;
(2)已知定点
,若直线
与椭圆交于
、
两 点.问:是否存在
的值,
使以
为直径的圆过
点?请说明理由.
斜率为2的直线经过抛物线
的焦点,与抛物线交与A、B两点,则
=
.
(本小题满分14分)已知椭圆
的一个焦点
与抛物线
的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为
的直线
过点
.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为
,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.
如图,在
ABC中,
C=90°,AC="b," BC="a," P为三角形内的一点,且
,
(Ⅰ)建立适当的坐标系求出P的坐标;
(Ⅱ)求证:│PA│
2
+│PB│
2
=5│PC│
2
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案