题目内容
【题目】如图,在几何体
中,四边形
,
为矩形,平面
平面
,
平面
,
,
,
为棱
的中点.
![]()
(1)证明:
;
(2)设
与
的交点为
,试问:在线段
上是否存在一点
,使得
平面
.
【答案】(1)证明见解析;(2)见解析.
【解析】
(1)先证明线
平面
可得
,根据
可证明
,从而可证
平面
,由线面垂直的性质可得结论(2)设
为线段
的中点,可证四边形
为平行四边形,取
的中点
,连
由中位线可知,
,即可证明.
(1)因为
平面
,所以
,
又
,
,所以
平面
,
因为
,所以
平面
,
平面
,所以
,
因为平面
平面
,平面
平面
,
,
所以
平面
,
经计算可得
,
,
,
从而
,
所以在
中,
,
又
平面
,
,
所以
平面
,
又
平面
,所以
.
(2)当
时,
平面
.
![]()
其理由如下:
因为
平面
,
平面
,所以
,∴
,
设
为线段
的中点,又
,
∴
,
,
所以四边形
为平行四边形,
所以
,
又因为中位线的性质,所以
,
所以
,
因为
平面
,
平面
,
所以
平面
.
练习册系列答案
相关题目
【题目】在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方法,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
年龄 |
|
|
|
|
|
|
频数 | 10 | 30 | 30 | 20 | 5 | 5 |
赞成人数 | 9 | 25 | 24 | 9 | 2 | 1 |
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的
列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在
,
调查的人中各随机选取1人进行追踪调查,求选中的2人中赞成“使用微信交流”的人数恰好为1人的概率.
| 0.025 | 0.010 | 0.005 | 0.001 |
| 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:
,其中
.