题目内容
两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图1中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作
,第2个五角形数记作
,第3个五角形数记作
,第4个五角形数记作
,……,若按此规律继续下去,则
,若
,则
.
![]()
1
5
12
22
![]()
【答案】
35,10
【解析】
![]()
将图中的小石子分组,分组方法如图所示
1+(3*1+1)+(3*2+1)+(3*3+1)+…+【3*(n-1)+1】=![]()
.
a(n)=145时,n=10.
练习册系列答案
相关题目