题目内容
【题目】已知函数![]()
(1)讨论函数
的单调性
(2)函数
,且
.若
在区间(0,2)内有零点,求实数m的取值范围
【答案】(1)见解析;
(2)
.
【解析】
(1)f′(x)
ex﹣m,对m分类讨论,利用导数的正负研究函数的单调性即可得出.
(2)设
是
在区间
内的一个零点,由g(0)=g(
)=g(2)=0,转化为:
在区间
内至少有两个不同零点
及
,通过研究
的单调性、极值最值,进而得出m的取值范围.
(1)f′(x)
ex﹣m,
①当
时,
成立,
在
上单调递增;
②当
时,令
,得
,则
在区间
单调递减,在
单调递增.
(2)
,
设
是
在区间
内的一个零点,因为
,
,可知
在区间
上不单调,故
在区间
存在零点
;同理:由
,可知
在区间
上存在零点
,即
在区间
内至少有两个不同零点
及
.
由(1)知
,
,得
,此时
在区间
单调递减,在
单调递增.
由
,知
,
所以
,则
;
故只需:
,解得:
.
所以实数
的取值范围是
.
练习册系列答案
相关题目
【题目】十三届全国人大二次会议于2019年3月5日在京召开.为了了解某校大学生对两会的关注程度,学校媒体在开幕后的第二天,从学生中随机抽取了180人,对是否收看2019年两会开幕会情况进行了问卷调查,统计数据得到列联表如下:
收看 | 没收看 | 合计 | |
男生 | 40 | ||
女生 | 30 | 60 | |
合计 |
(1)请完成列联表;
(2)根据上表说明,能否有99%的把握认为该校大学生收看开幕会与性别有关?(结果精确到0.001)
附:
,其中
.
| 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |