题目内容
在数列{an}中,a1=1,an+1=
,n=1,2,3,….
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法加以证明.
| an | 3an+1 |
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法加以证明.
分析:(Ⅰ)由a1=1,an+1=
,即可求得a2,a3,a4的值;
(Ⅱ)由(Ⅰ)可猜想an=
;分二步证明即可:①当n=1时,去证明等式成立;②假设n=k时,等式成立,去推证n=k+1时,等式也成立即可.
| an |
| 3an+1 |
(Ⅱ)由(Ⅰ)可猜想an=
| 1 |
| 3n-2 |
解答:解:(Ⅰ)∵a1=1,an+1=
,
∴a2=
=
;
a3=
=
=
,a4=
=
;
(Ⅱ)由(Ⅰ)可猜想:an=
.
证明:①当n=1时,a1=1,等式成立;
②假设n=k时,ak=
,
则当n=k+1时,ak+1=
=
=
=
,
即n=k+1时,等式也成立.
综上所述,对任意自然数n∈N*,an=
.
| an |
| 3an+1 |
∴a2=
| a1 |
| 3a1+1 |
| 1 |
| 4 |
a3=
| a2 |
| 3a2+1 |
| ||
|
| 1 |
| 7 |
| ||
|
| 1 |
| 10 |
(Ⅱ)由(Ⅰ)可猜想:an=
| 1 |
| 3n-2 |
证明:①当n=1时,a1=1,等式成立;
②假设n=k时,ak=
| 1 |
| 3k-2 |
则当n=k+1时,ak+1=
| ak |
| 3ak+1 |
| ||
3×
|
| 1 |
| 3k+1 |
| 1 |
| 3(k+1)-2 |
即n=k+1时,等式也成立.
综上所述,对任意自然数n∈N*,an=
| 1 |
| 3n-2 |
点评:本题考查数列递推式,着重考查数学归纳法的应用,猜得an=
是关键,考查运算与推理证明的能力,属于中档题.
| 1 |
| 3n-2 |
练习册系列答案
相关题目