题目内容

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列{bn}满足bn=
1
anan+1
,Tn为数列bn的前n项和.
(1)求an和Tn
(2)若对于任意的n∈N+,不等式λTn<n+8(-1)n恒成立,求实数λ的取值范围.
考点:数列与不等式的综合
专题:计算题,等差数列与等比数列,不等式的解法及应用
分析:(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),易证an-an-1=2(n≥2,n∈N*),于是可得:{an}是等差数列,再由等差数列的通项公式,即可得到通项,再由裂项相消求和,求得Tn
(2)分别讨论n为奇数和偶数,运用分离参数,讨论右边的最小值,注意运用单调性和基本不等式,即可得到范围.
解答: 解:(1)当n≥2,n∈N*时,由已知Sn=nan-n(n-1)
得Sn-1=(n-1)an-1-(n-1)(n-2).
两式相减得Sn-Sn-1=nan-(n-1)an-1-2(n-1).
又Sn-Sn-1=an,所以(n-1)an-(n-1)an-1=2(n-1).
即an-an-1=2(n≥2,n∈N*).
所以{an}是以1为首项、2为公差的等差数列,
即an=1+2(n-1)=2n-1,
bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
).
则Tn=b1+b2+…+bn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
).
则Tn=
n
2n+1

(2)由于对任意的n∈N+,不等式λTn<n+8(-1)n恒成立,
则当n为奇数时,有λTn<n-8恒成立,
即有λ<
(n-8)(2n+1)
n
=2n-
8
n
-15,
由于2n-
8
n
-15在n≥1上递增,则n=1取得最小值,且为-21,
则λ<-21;
当n为偶数时,有λTn<n+8恒成立,
即有λ<
(n+8)(2n+1)
n
=2n+
8
n
+17,
由于2n+
8
n
+17≥2
2n•
8
n
+17=25,当且仅当n=2,取得最小值,且为25.
则λ<25.
由于对任意的n∈N+,不等式恒成立,则λ<-21.
则实数λ的取值范围是(-∞,-21).
点评:本题考查数列的通项和求和,着重考查运算、推理的能力,突出考查等差关系的确定与裂项法求和的综合应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网