ÌâÄ¿ÄÚÈÝ
13£®£¨1£©ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÆäǰnÏîºÍΪSn£®Èôa4+a5=0£¬ÊÔ·Ö±ð±È½ÏS5ÓëS3¡¢S2ÓëS6µÄ´óС¹ØÏµ£®£¨2£©ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬{an}µÄǰnÏîºÍΪSn£®Ö¤Ã÷£ºÈô´æÔÚÕýÕûÊýk£¬Ê¹ak+ak+1=0£¬ÔòSm=S2k-m£¨m¡ÊN*£¬m£¼2k£©£®
£¨3£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬Éè{bn}µÄǰnÏî³Ë»ýTn=b1•b2•b3¡bn£¬Àà±È£¨2£©µÄ½áÂÛ£¬Ð´³öÒ»¸öÓëTnÓйصÄÀàËÆµÄÕæÃüÌ⣬²¢Ö¤Ã÷£®
·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬ÓÉa4+a5=0£¬¿ÉµÃ${a}_{1}=-\frac{7}{2}d$£®·Ö±ðÀûÓõȲîÊýÁеÄǰnÏîºÍ¹«Ê½¿ÉµÃ£ºS5£¬S3£¬S2£¬S6£®¼´¿ÉµÃ³ö´óС¹ØÏµ£®
£¨2£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬´æÔÚÕýÕûÊýk£¬Ê¹ak+ak+1=0£¬¿ÉµÃa1=$\frac{£¨1-2k£©d}{2}$£®×÷²îS2k-m-Sm¼´¿ÉµÃ³ö£®
£¨3£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬Éè{bn}µÄǰnÏî³Ë»ýTn=b1•b2•b3¡bn£¬Èô´æÔÚÕýÕûÊýk£¬Ê¹bkbk+1=1£¬ÔòTm=T2k-m£¨m¡ÊN*£¬m£¼2k£©£®ÀûÓõȱÈÊýÁеÄͨÏʽ¼°ÆäµÈ²îÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð £¨1£©½â£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬¡ßa4+a5=0£¬
¡à2a1+7d=0£¬½âµÃ${a}_{1}=-\frac{7}{2}d$£®
¡àS5=5a1+$\frac{5¡Á4}{2}d$=-$\frac{15}{2}$d£¬
S3=$3{a}_{1}+\frac{3¡Á2}{2}d$=-$\frac{15}{2}$d£¬
¡àS5=S3£®
S2=$2{a}_{1}+\frac{2¡Á1}{2}d$=-6d£»
S6=6a1+$\frac{6¡Á5}{2}d$=-6d£®
µ±d¡Ý0ʱ£¬S2¡ÝS6£®
µ±d£¼0ʱ£¬S2£¼S6£®
£¨2£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬
¡ß´æÔÚÕýÕûÊýk£¬Ê¹ak+ak+1=0£¬
¡à2a1+£¨2k-1£©d=0£®
¡àa1=$\frac{£¨1-2k£©d}{2}$£®
ÔòS2k-m-Sm=£¨2k-m£©a1+$\frac{£¨2k-m£©£¨2k-m-1£©}{2}$d-[$m{a}_{1}+\frac{m£¨m-1£©}{2}d$]
=£¨2k-2m£©¡Á$\frac{£¨1-2k£©d}{2}$+[2k2-k£¨2m+1£©+m]d
=[-2k2+£¨2m+1£©k-m]d+[2k2-k£¨2m+1£©+m]d
=0£®
£¨3£©ÔڵȱÈÊýÁÐ{bn}ÖУ¬Éè{bn}µÄǰnÏî³Ë»ýTn=b1•b2•b3¡bn£¬Èô´æÔÚÕýÕûÊýk£¬Ê¹bkbk+1=1£¬ÔòTm=T2k-m£¨m¡ÊN*£¬m£¼2k£©£®
Ö¤Ã÷£º¡ßbkbk+1=1£¬¡à${b}_{1}^{2}{q}^{2k-1}$=1£®
¡à$\frac{{T}_{2k-m}}{{T}_{m}}$=$\frac{{b}_{1}{b}_{2}•¡•{b}_{2k-m}}{{b}_{1}{b}_{2}•¡•{b}_{m}}$=$\frac{{b}_{1}^{2k-m}{q}^{1+2+¡+£¨2k-m-1£©}}{{b}_{1}^{m}{q}^{1+2+¡+£¨m-1£©}}$=$\frac{{b}_{1}^{2k-m}{q}^{£¨2k-m£©£¨2k-m-1£©}}{{b}_{1}^{m}{q}^{\frac{m£¨m-1£©}{2}}}$=$£¨{b}_{1}^{2}{q}^{2k-1}£©^{k-m}$=1£®
ÔòTm=T2k-m£¨m¡ÊN*£¬m£¼2k£©£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµµÄÓ¦ÓᢵȲîÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮