ÌâÄ¿ÄÚÈÝ
10£®ÏÂÁнáÂÛÖУ¬ÕýÈ·µÄÓУ¨¡¡¡¡£©¢Ù²»´æÔÚʵÊýk£¬Ê¹µÃ·½³Ìxlnx-$\frac{1}{2}$x2+k=0ÓÐÁ½¸ö²»µÈʵ¸ù£»
¢ÚÒÑÖª¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒa2+b2=2c2£¬Ôò½ÇCµÄ×î´óֵΪ$\frac{¦Ð}{6}$£»
¢Ûº¯Êýy=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$Óëy=lntan$\frac{x}{2}$ÊÇͬһº¯Êý£»
¢ÜÔÚÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬×óÓÒ¶¥µã·Ö±ðΪA£¬B£¬ÈôPΪÍÖÔ²ÉÏÈÎÒâÒ»µã£¨²»Í¬ÓÚA£¬B£©£¬ÔòÖ±ÏßPAÓëÖ±ÏßPBбÂÊÖ®»ýΪ¶¨Öµ£®
| A£® | ¢Ù¢Ü | B£® | ¢Ù¢Û | C£® | ¢Ù¢Ú | D£® | ¢Ú¢Ü |
·ÖÎö ¢Ù£¬º¯Êýf£¨x£©=xlnx-$\frac{1}{2}$x2ÔÚ¶¨ÒåÓòÄÚµ¥µ÷£¬²»´æÔÚʵÊýk£¬Ê¹µÃ·½³Ìxlnx-$\frac{1}{2}$x2+k=0ÓÐÁ½¸ö²»µÈʵ¸ù£»
¢Ú£¬a2+b2=2c2¡Ý2ab£¬cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{{c}^{2}}{2ab}¡Ý\frac{1}{2}$Ôò½ÇCµÄ×î´óֵΪ$\frac{¦Ð}{3}$£»
¢Û£¬º¯Êýy=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$Óëy=lntan$\frac{x}{2}$µÄ¶¨ÒåÓò²»Í¬£¬²»ÊÇͬһº¯Êý£»
¢Ü£¬ÉèA£¨-a£¬0£©£¬B£¨a£¬0£©£¬P£¨m£¬n£©£¬Ôòb2m2+a2n2=a2b2⇒a2n2=b2£¨a2-m2£©⇒Ö±ÏßPAÓëÖ±ÏßPBбÂÊÖ®»ýΪ$\frac{n}{m+a}•\frac{n}{m-a}=\frac{{n}^{2}}{{m}^{2}-{a}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¨¶¨Öµ£©£®
½â´ð ½â£º¶ÔÓÚ¢Ù£¬º¯Êýf£¨x£©=xlnx-$\frac{1}{2}$x2ÔÚ¶¨ÒåÓòÄÚµ¥µ÷£¬²»´æÔÚʵÊýk£¬Ê¹µÃ·½³Ìxlnx-$\frac{1}{2}$x2+k=0ÓÐÁ½¸ö²»µÈʵ¸ù£¬ÕýÈ·£»
¶ÔÓÚ¢Ú£¬¡ßa2+b2=2c2£¬¡àa2+b2=2c2¡Ý2ab£¬cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}=\frac{{c}^{2}}{2ab}¡Ý\frac{1}{2}$£¬Ôò½ÇCµÄ×î´óֵΪ$\frac{¦Ð}{3}$£¬¹Ê´í£»
¶ÔÓÚ¢Û£¬º¯Êýy=$\frac{1}{2}$ln$\frac{1-cosx}{1+cosx}$Óëy=lntan$\frac{x}{2}$µÄ¶¨ÒåÓò²»Í¬£¬²»ÊÇͬһº¯Êý£¬¹Ê´í£»
¶ÔÓڢܣ¬ÉèA£¨-a£¬0£©£¬B£¨a£¬0£©£¬P£¨m£¬n£©£¬Ôòb2m2+a2n2=a2b2⇒a2n2=b2£¨a2-m2£©⇒Ö±ÏßPAÓëÖ±ÏßPBбÂÊÖ®»ýΪ$\frac{n}{m+a}•\frac{n}{m-a}=\frac{{n}^{2}}{{m}^{2}-{a}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$£¨¶¨Öµ£©£¬¹ÊÕýÈ·£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | ${£¨{x-\frac{1}{3}}£©^2}+{£¨{y-\frac{{2\sqrt{3}}}{3}}£©^2}=\frac{16}{3}$ | B£® | ${£¨{x-\frac{1}{3}}£©^2}+{£¨{y-\frac{{\sqrt{3}}}{3}}£©^2}=\frac{16}{3}$ | ||
| C£® | ${£¨{x-3}£©^2}+{£¨{y-2\sqrt{3}}£©^2}=16$ | D£® | ${£¨{x-3}£©^2}+{£¨{y-\sqrt{3}}£©^2}=16$ |
| A£® | $\frac{\sqrt{3}}{3}$ | B£® | $\sqrt{3}$ | C£® | $\frac{\sqrt{2}}{2}$ | D£® | $\sqrt{2}$ |