题目内容
【题目】盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.
【答案】
(1)解:由题意可得,随机变量ξ的取值是2、3、4、5、6.
则随机变量ξ的分布列如下:
P(ξ=2)= ![]()
P(ξ=3)= ![]()
P(ξ=4)=
,
P(ξ=5)=
=
,
P(ξ=6)=
=
,
∴变量ξ的分布列是:
![]()
(2)解:随机变量ξ的期望
Eξ=2×
+3×
+4×
+5×
+6×
= ![]()
【解析】(1)首先分析题目已知第一次从盒子中任取1个球,放回后第二次再任取1个球.记第一次与第二次取到球的标号之和为ξ.则可分析得到随机变量ξ可以取值是2、3、4、5、6.然后分别求出概率即可得到分布.(2)由(1)的分布列,再根据期望公式求出期望值即可.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).
练习册系列答案
相关题目