题目内容
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.
(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.![]()
【答案】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;
(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);
则
=(1,1,0),
=(0,0,1),
=(1,﹣1,0),
所以
=0,
=0;
即PQ⊥DQ,PQ⊥DC,
故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(Ⅱ)依题意,有B(1,0,1),
=(1,0,0),
=(﹣1,2,﹣1);
设
=(x,y,z)是平面的PBC法向量,
则
即
,
因此可取
=(0,﹣1,﹣2);
设
是平面PBQ的法向量,则
,
可取
=(1,1,1),
所以cos<
,
>=﹣
,
故二面角角Q﹣BP﹣C的余弦值为﹣
.![]()
【解析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;
(Ⅰ)根据坐标系,求出
、
、
的坐标,由向量积的运算易得
=0,
=0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、
、
的坐标,进而求出平面的PBC的法向量
与平面PBQ法向量
,进而求出cos<
,
>,根据二面角与其法向量夹角的关系,可得答案.
练习册系列答案
相关题目