题目内容
曲线f(x)=ax2+bx+c(a>0,b,c∈R)通过点P(0,2a2+8),在点Q(-1,f(-1)) 处的切线垂直于y轴,则| c | b |
分析:把(0,2a+3)代入到f(x)的解析式中得到c与a的解析式,解出c;求出f'(x),因为在点(-1,f(-1))处的切线垂直于y轴,得到切线的斜率为0,即f′(-1)=0,代入导函数得到b与a的关系式,解出b,最后利用基本不等式求出
的最小值即可.
| c |
| b |
解答:解:由f(x)=ax2+bx+c得到f'(x)=2ax+b.
因为曲线y=f(x)通过点(0,2a2+8),故f(0)=c=2a2+8,
又曲线y=f(x)在(-1,f(-1))处的切线垂直于y轴,故f'(-1)=0,
即-2a+b=0,因此b=2a.
则
=
=a+
≥4,
则
的最小值为4.
故答案为:4.
因为曲线y=f(x)通过点(0,2a2+8),故f(0)=c=2a2+8,
又曲线y=f(x)在(-1,f(-1))处的切线垂直于y轴,故f'(-1)=0,
即-2a+b=0,因此b=2a.
则
| c |
| b |
| 2a 2+8 |
| 2a |
| 4 |
| a |
则
| c |
| b |
故答案为:4.
点评:本题是一道综合题,要求学生会利用导数研究函数的单调性,会利用导数研究曲线上某点的切线方程.做题时注意符合函数的求导法则.
练习册系列答案
相关题目