题目内容
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式.
(2)求数列{
}的前n项和Sn.
(1)求{an},{bn}的通项公式.
(2)求数列{
(1) an=2n-1 bn=2n- (2) Sn=6-
(1)设{an}的公差为d,{bn}的公比为q,则依题意有q>0且
解得
所以an="1+(n-1)" d=2n-1,bn=qn-1=2n-1.
(2)
=
,
Sn=1+
+
+…+
+
, ①
2Sn=2+3+
+…+
+
. ②
②-①,得Sn=2+2+
+
+…+
-
=2+2×(1+
+
+…+
)-
,
=2+2×
-
=6-
.
所以an="1+(n-1)" d=2n-1,bn=qn-1=2n-1.
(2)
Sn=1+
2Sn=2+3+
②-①,得Sn=2+2+
=2+2×(1+
=2+2×
练习册系列答案
相关题目