题目内容

7.已知等比数列{an}中,a1+a3=10,a4+a6=$\frac{5}{4}$.
(1)求数列{an}的通项公式;
(2)求证:数列{lgan}是等差数列.

分析 (1)利用等比数列的通项公式即可得出;
(2)利用对数的运算性质只要证明:lgan+1-lgan=常数即可得出.

解答 (1)解:设等比数列{an}的公比为q,∵a1+a3=10,a4+a6=$\frac{5}{4}$.
∴${a}_{1}(1+{q}^{2})$=10,${a}_{1}{q}^{3}(1+{q}^{2})$=$\frac{5}{4}$,解得a1=8,q=$\frac{1}{2}$.
∴an=8×$(\frac{1}{2})^{n-1}$=24-n
(2)证明:lgan+1-lgan=$lg\frac{{a}_{n+1}}{{a}_{n}}$=lg$\frac{1}{2}$=-lg2,lga1=3lg2.
∴数列{lgan}是等差数列,首项为3lg2,公差为-lg2.

点评 本题考查了等差数列与等比数列的定义及其通项公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网