ÌâÄ¿ÄÚÈÝ
17£®ÔÚÊýÁÐ{an}ÖУ¬a1=$\frac{1}{2}$£¬ÆäǰnÏîºÍΪSn£¬ÇÒSn=an+1-$\frac{1}{2}$£¨n¡ÊN*£©£®£¨¢ñ£©Çóan£¬Sn£»
£¨¢ò£©Éèbn=log2£¨2Sn+1£©-2£¬ÊýÁÐ{cn}Âú×ãcn•bn+3•bn+4=1+n£¨n+1£©£¨n+2£©•2bn£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬Çóʹ4Tn£¾2n+1-$\frac{1}{504}$³ÉÁ¢µÄ×îСÕýÕûÊýnµÄÖµ£®
·ÖÎö £¨¢ñ£©ÓÉSn=an+1-$\frac{1}{2}$£¬µÃ${S}_{n-1}={a}_{n}-\frac{1}{2}£¨n¡Ý2£©$£¬Á½Ê½×÷²îºó¿ÉµÃÊýÁÐ{an}ÊÇÊ×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ2 µÄµÈ±ÈÊýÁУ¬ÓɵȱÈÊýÁеÄͨÏʽµÃ${a}_{n}=\frac{1}{2}•{2}^{n-1}={2}^{n-2}$£¬´úÈëSn=an+1-$\frac{1}{2}$ÇóµÃSn£»
£¨¢ò£©°ÑSn´úÈëbn=log2£¨2Sn+1£©-2£¬½áºÏcn•bn+3•bn+4=1+n£¨n+1£©£¨n+2£©•2bnÇóµÃcn£¬È»ºóÀûÓÃÁÑÏîÏàÏû·¨¼°µÈ±ÈÊýÁеÄǰnÏîºÍµÃ´ð°¸£®
½â´ð ½â£º£¨¢ñ£©ÓÉSn=an+1-$\frac{1}{2}$£¬µÃ${S}_{n-1}={a}_{n}-\frac{1}{2}£¨n¡Ý2£©$£¬
Á½Ê½×÷²îµÃ£ºan=an+1-an£¬¼´2an=an+1£¨n¡Ý2£©£¬
¡à$\frac{{a}_{n+1}}{{a}_{n}}=2£¨n¡Ý2£©$£¬
ÓÖ${a}_{1}={S}_{1}={a}_{2}-\frac{1}{2}$£¬µÃa2=1£¬
¡à$\frac{{a}_{2}}{{a}_{1}}=2$£¬
¡àÊýÁÐ{an}ÊÇÊ×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
Ôò${a}_{n}=\frac{1}{2}•{2}^{n-1}={2}^{n-2}$£¬
${S}_{n}={a}_{n+1}-\frac{1}{2}={2}^{n-1}-\frac{1}{2}$£»
£¨¢ò£©bn=log2£¨2Sn+1£©-2=$lo{g}_{2}{2}^{n}-2=n-2$£¬
¡àcn•bn+3•bn+4=1+n£¨n+1£©£¨n+2£©•2bn£¬
¼´${c}_{n}£¨n+1£©£¨n+2£©=1+£¨n+1£©£¨n+2£©•{2}^{n-2}$£¬
${c}_{n}=\frac{1}{£¨n+1£©£¨n+2£©}+{2}^{n-2}=\frac{1}{n+1}-\frac{1}{n+2}+{2}^{n-2}$£¬
${T}_{n}=£¨\frac{1}{2}-\frac{1}{3}£©+£¨\frac{1}{3}-\frac{1}{4}£©+¡+£¨\frac{1}{n+1}-\frac{1}{n+2}£©$+£¨2-1+20+¡+2n-2£©
=$\frac{1}{2}-\frac{1}{n+2}+\frac{\frac{1}{2}£¨1-{2}^{n}£©}{1-2}$=$\frac{1}{2}-\frac{1}{n+2}-\frac{1}{2}+{2}^{n-1}$=${2}^{n-1}-\frac{1}{n+2}$£®
ÓÉ4Tn£¾2n+1-$\frac{1}{504}$£¬µÃ
$4£¨{2}^{n-1}-\frac{1}{n+2}£©£¾{2}^{n+1}-\frac{1}{504}$£¬
¼´$\frac{4}{n+2}£¼\frac{1}{504}$£¬n£¾2014£®
¡àʹ4Tn£¾2n+1-$\frac{1}{504}$³ÉÁ¢µÄ×îСÕýÕûÊýnµÄֵΪ2015£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬ÑµÁ·ÁËÊýÁеķÖ×éÇóºÍ¡¢ÁÑÏîÏàÏû·¨ÇóÊýÁеĺͼ°µÈ±ÈÊýÁеÄǰnÏîºÍ£¬ÊÇÖеµÌ⣮
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
| A£® | {0£¬4} | B£® | {2£¬3£¬4} | C£® | {0£¬2£¬4} | D£® | {0£¬2£¬3£¬4} |