题目内容

设锐角△ABC中,2sin2A-cos2A=2.
(1)求∠A的大小;
(2)求(cosB+sinB)2+sin2C的取值范围.
(1)由2sin2A-cos2A=2得:cos2A=-
1
2

因为△ABC是锐角三角形,所以2A∈(0,π),
所以2A=
3
,所以A=
π
3

(2)因为C=
3
-B

所以(cosB+sinB)2+sin2C
=1+sin2B+sin(
3
-2B)
=1+sin2B-
3
2
cos2B+
1
2
sin2B
=1+
3
2
sin2B-
3
2
cos2B
=1+
3
sin(2B-
π
6
)

因为△ABC是锐角三角形,A=
π
3
,所以B∈(
π
6
π
2
)

所以2B-
π
6
∈(
π
6
6
)

所以(cosB-sinB)2+sin2C的取值范围是(1+
3
2
,1+
3
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网