题目内容
已知向量a=(1,-1),b=(1,2),向量c满足(c+b)⊥a,(c-a)∥b,则c=
- A.(2,1)
- B.(1,0)
- C.(
) - D.(0,-1)
A
分析:设出要求向量的坐标,表示出要用的两组向量的坐标,根据两组向量之间的垂直和平行关系,利用平行和垂直的充要条件,写出关于点C的坐标的方程,解方程即可.
解答:∵向量
=(1,-1),
=(1,2),
设向量
的坐标是(x,y)
∵向量
满足(
)⊥
,(
)∥
,
∴(
)•
=0,(
)=λ
,
=(x+1,y+2)
=(x-1,y+1)
∴x+1-y-2=0
2(x-1)-y-1=0
∴x=2,y=1,
故选A.
点评:本题考查向量的垂直充要条件和平行的充要条件,向量的加减运算,是一个向量的综合题,解题时主要是简单的运算,考点知识不少,但运算量不大.
分析:设出要求向量的坐标,表示出要用的两组向量的坐标,根据两组向量之间的垂直和平行关系,利用平行和垂直的充要条件,写出关于点C的坐标的方程,解方程即可.
解答:∵向量
设向量
∵向量
∴(
∴x+1-y-2=0
2(x-1)-y-1=0
∴x=2,y=1,
故选A.
点评:本题考查向量的垂直充要条件和平行的充要条件,向量的加减运算,是一个向量的综合题,解题时主要是简单的运算,考点知识不少,但运算量不大.
练习册系列答案
相关题目
已知向量
=(1,0),
=(-
,3),则向量
、
的夹角为( )
| a |
| b |
| 3 |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|