题目内容
设f (x)为可导函数,且满足
=-1,则曲线y=f (x)在点(1,f(1))处的切线的斜率是( )
| lim |
| x→0 |
| f(1)-f(1-x) |
| 2x |
| A.2 | B.-1 | C.
| D.-2 |
∵
=-1,
∴
=-1
∴
=-2
∴f′(1)=-2
即曲线y=f (x)在点(1,f(1))处的切线的斜率是-2,
故选D.
| lim |
| x→0 |
| f(1)-f(1-x) |
| 2x |
∴
| 1 |
| 2 |
| lim |
| x→0 |
| f(1)-f(1-x) |
| x |
∴
| lim |
| x→0 |
| f(1)-f(1-x) |
| x |
∴f′(1)=-2
即曲线y=f (x)在点(1,f(1))处的切线的斜率是-2,
故选D.
练习册系列答案
相关题目
设f(x)为可导函数,且满足条件
=3,则曲线y=f(x)在点(1,f(1))处的切线的斜率为( )
| lim |
| x→0 |
| f(x+1)-f(1) |
| 2x |
A、
| ||
| B、3 | ||
| C、6 | ||
| D、无法确定 |