题目内容
设
<α<
,sin(α-
)=
,则
的值为
.
| π |
| 3 |
| 3π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| sinα-cos2α+1 |
| tanα |
5
| ||
| 50 |
5
| ||
| 50 |
分析:首先根据角的范围以及同角三角函数的基本关系求出cos(α-
)、sinα、cosα的值,然后利用二倍角公式化简所求的式子,并将相应的值代入即可.
| π |
| 4 |
解答:解:∵
<α<
,
∴
<α-
<
∵sin(α-
)=
∴cos(α-
)=
=
.
∴sinα=sin[(α-
)+
]
=sin(α-
)cos
+cos(α-
)sin
=
×
+
×
=
∴cosα=
=
tanα=
=7
∴
=
=
=cosα(1+2sinα)
=
(1+2×
)
=
.
故答案为:
.
| π |
| 3 |
| 3π |
| 4 |
∴
| π |
| 12 |
| π |
| 4 |
| π |
| 2 |
∵sin(α-
| π |
| 4 |
| 3 |
| 5 |
∴cos(α-
| π |
| 4 |
1-sin2(α-
|
| 4 |
| 5 |
∴sinα=sin[(α-
| π |
| 4 |
| π |
| 4 |
=sin(α-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| ||
| 2 |
7
| ||
| 10 |
∴cosα=
| 1-sin2α |
| ||
| 10 |
tanα=
| sinα |
| cosα |
∴
| sinα-cos2α+1 |
| tanα |
=
| sinα+2sin2α |
| tanα |
=
| sinα(1+2sinα) | ||
|
=cosα(1+2sinα)
=
| ||
| 10 |
7
| ||
| 10 |
=
5
| ||
| 50 |
故答案为:
5
| ||
| 50 |
点评:本题主要考查同角三角函数的基本关系、二倍角公式等,求出sinα是解题的关键,属于中档题.
练习册系列答案
相关题目