题目内容
6.已知p:2x2-3x+1≤0,q:x2-(2a+1)x+a2≤0.(1)若a=2且p∧q为真,求实数x的取值范围;
(2)若p是q的充分不必要条件,求实数a的取值范围.
分析 (1)分别求出关于p,q成立的x的范围,求出x的值即可;(2)根据p是q的充分不必要条件,结合二次函数的性质得到关于a的不等式组,解出即可.
解答 解:p:$\frac{1}{2}$≤x≤1;
(1)若a=2,则q:1≤x≤4,
∵p∧q为真,∴p,q都为真,
∴x=1;
(2)设f(x)=x2-(2a+1)x+a2,
需满足$\left\{\begin{array}{l}{△>0}\\{f(\frac{1}{2})≤0}\\{f(1)≤0}\end{array}\right.$,解得0≤a≤$\frac{1+\sqrt{2}}{2}$.
点评 本题考查了充分必要条件,考查符合命题的判断以及二次函数的性质,是一道基础题.
练习册系列答案
相关题目
16.己知命题p:“?x0>0,3${\;}^{{x}_{0}}$=2”,则¬p是( )
| A. | ?x0>0,3${\;}^{{x}_{0}}$≠2 | B. | ?x>0,3x≠2 | C. | ?x≤0,3x=2 | D. | ?x≤0,3x≠2 |
18.如果A={x>-1},那么( )
| A. | 0⊆A | B. | {0}?A | C. | ∅?A | D. | {0}⊆A |
15.2016年1月2日凌晨某公司公布的元旦全天交易数据显示,天猫元旦当天全天的成交金额为315.5亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了1月1日100名网购者的网购情况,得到如表数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
(1)先求出x,y,p,q的值,再将如图所示的频率分布直方图绘制完整;
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
参考数据:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 网购金额(元) | 频数 | 频率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.3 |
| (2500,3000] | y | q |
| 合计 | 100 | 1.00 |
(2)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
| x | 网龄3年以上 | 网龄不足3年 | 合计 |
| 购物金额在2000元以上 | 35 | ||
| 购物金额在2000元以下 | 20 | ||
| 总计 | 100 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |