题目内容
11.若实数x,y满足$\left\{{\begin{array}{l}{x+y≤3}\\{y-x+1≤0}\\{y≥0}\end{array}}\right.$,则2x+2y的最大最小值之和( )| A. | 5 | B. | 16 | C. | 17 | D. | 18 |
分析 由实数x,y满足$\left\{{\begin{array}{l}{x+y≤3}\\{y-x+1≤0}\\{y≥0}\end{array}}\right.$,作出可行域,利用角点法能求出z=x=2y的最小值.
解答
解:由实数x,y满足$\left\{{\begin{array}{l}{x+y≤3}\\{y-x+1≤0}\\{y≥0}\end{array}}\right.$,作出可行域如图:
∵z=x+2y,解方程组$\left\{\begin{array}{l}{x+y=3}\\{y-x+1=0}\end{array}\right.$,得A(2,1),∴zA=2+2×1=4,
∵B(1,0),∴zB=1+2×0=1;
∴z=x+2y的最小值是0.
2x+2y的最大最小值之和:24+20=17.
故选:C.
点评 在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.
练习册系列答案
相关题目
10.设{an}是首项为a1,公比为q的等比数列,则“a1q>0”是“{an}为递增数列”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
6.已知0<a<1<b,函数f(x)=lg(bax-abx)定义域为(-1,1),值域为(-∞,0),则a(b-$\frac{3}{2}$)的取值范围是( )
| A. | ($\frac{1-\sqrt{5}}{4}$,0) | B. | ($\frac{1-\sqrt{5}}{4}$,$\frac{\sqrt{5}-2}{2}$) | C. | [$\frac{9-9\sqrt{5}}{32}$,$\frac{\sqrt{5}-2}{2}$) | D. | [$\frac{9-9\sqrt{5}}{32}$,0) |
16.
某商店老板设计了如下有奖游戏方案:顾客只要花10元钱,即可参加有奖游戏一次.游戏规则如下:棋子从点M开始沿箭头方向跳向N,每次只跳一步(即一个箭头),当下一步有方向选择时,跳的方法必须通过投掷骰子决定,方案如下:当掷出的点数为1时,沿$\overrightarrow{MD}$方向跳一步;当掷出的点数为2,4,6时,沿$\overrightarrow{ME}$方向跳一步;当掷出的点数为3,5时,沿$\overrightarrow{MA}$方向跳一步;奖励标准如表:
若该店平均每天有200人参加游戏,按每月30天计算.则该店开展此游戏每月获利的期望(均值)为2083元
(精确到1元)
| 从M到N用的步数 | 2 | 3 | 4 |
| 奖励金额(元) | 100 | 10 | 5 |
(精确到1元)